Severe influenza A virus (IAV) infections can result in hyper-inflammation, lung injury and acute respiratory distress syndrome1–5 (ARDS), for which there are no effective pharmacological therapies. Necroptosis is an attractive entry point for therapeutic intervention in ARDS and related inflammatory conditions because it drives pathogenic lung inflammation and lethality during severe IAV infection6–8 and can potentially be targeted by receptor interacting protein kinase 3 (RIPK3) inhibitors. Here we show that a newly developed RIPK3 inhibitor, UH15-38, potently and selectively blocked IAV-triggered necroptosis in alveolar epithelial cells in vivo. UH15-38 ameliorated lung inflammation and prevented mortality following infection with laboratory-adapted and pandemic strains of IAV, without compromising antiviral adaptive immune responses or impeding viral clearance. UH15-38 displayed robust therapeutic efficacy even when administered late in the course of infection, suggesti
To survive in a complex social group, one needs to know who to approach and, more importantly, who to avoid. In mice, a single defeat causes the losing mouse to stay away from the winner for weeks1. Here through a series of functional manipulation and recording experiments, we identify oxytocin neurons in the retrochiasmatic supraoptic nucleus (SOROXT) and oxytocin-receptor-expressing cells in the anterior subdivision of the ventromedial hypothalamus, ventrolateral part (aVMHvlOXTR) as a key circuit motif for defeat-induced social avoidance. Before defeat, aVMHvlOXTR cells minimally respond to aggressor cues. During defeat, aVMHvlOXTR cells are highly activated and, with the help of an exclusive oxytocin supply from the SOR, potentiate their responses to aggressor cues. After defeat, strong aggressor-induced aVMHvlOXTR cell activation drives the animal to avoid the aggressor and minimizes future defeat. Our study uncovers a neural process that supports rapid social learning caused by d
Development of immunocompetent T cells in the thymus is required for effective defence against all types of pathogens, including viruses, bacteria and fungi. To this end, T cells undergo a very strict educational program in the thymus, during which both non-functional and self-reactive T cell clones are eliminated by means of positive and negative selection1.Thymic epithelial cells (TECs) have an indispensable role in these processes, and previous studies have shown the notable heterogeneity of these cells2–7. Here, using multiomic analysis, we provide further insights into the functional and developmental diversity of TECs in mice, and reveal a detailed atlas of the TEC compartment according to cell transcriptional states and chromatin landscapes. Our analysis highlights unconventional TEC subsets that are similar to functionally well-defined parenchymal populations, including endocrine cells, microfold cells and myocytes. By focusing on the endocrine and microfold TEC populatio
Load-bearing tissues, such as muscle and cartilage, exhibit high elasticity, high toughness and fast recovery, but have different stiffness (with cartilage being significantly stiffer than muscle)1–8. Muscle achieves its toughness through finely controlled forced domain unfolding–refolding in the muscle protein titin, whereas articular cartilage achieves its high stiffness and toughness through an entangled network comprising collagen and proteoglycans. Advancements in protein mechanics and engineering have made it possible to engineer titin-mimetic elastomeric proteins and soft protein biomaterials thereof to mimic the passive elasticity of muscle9–11. However, it is more challenging to engineer highly stiff and tough protein biomaterials to mimic stiff tissues such as cartilage, or develop stiff synthetic matrices for cartilage stem and progenitor cell differentiation12. Here we report the use of chain entanglements to significantly stiffen protein-based hydrogels w
Several peptides have stood out from the rest for their potential benefits in wound healing, tissue repair, and regeneration. These best healing peptides include BPC-157, Thymosin Beta-4/TB500, Melanotan 2 (II), Sermorelin, and GHK-Cu.