comparemela.com

Page 4 - Physics Review News Today : Breaking News, Live Updates & Top Stories | Vimarsana

Nanotechnology Now - Press Release: Researchers realize high-efficiency frequency conversion on integrated photonic chip

Abstract: A team led by Prof. GUO Guangcan and Prof. ZOU Changling from the University of Science and Technology of China of the Chinese Academy of Sciences realized efficient frequency conversion in microresonators via a degenerate sum-frequency process, and achieved cross-band frequency conversion and amplification of converted signal through observing the cascaded nonlinear optical effects inside the microresonator. The study was published in Physics Review Letters. Researchers realize high-efficiency frequency conversion on integrated photonic chip Hefei, China | Posted on April 23rd, 2021 Coherent frequency conversion process has wide application in classical and quantum information fields such as communication, detection, sensing, and imaging. As a bridge connecting wavebands between fiber telecommunications and atomic transition, coherent frequency conversion is a necessary interface for distributed quantum computing and quantum networks.

Researchers realize high-efficiency frequency conversion on integrated photonic chip

 E-Mail A team led by Prof. GUO Guangcan and Prof. ZOU Changling from the University of Science and Technology of China of the Chinese Academy of Sciences realized efficient frequency conversion in microresonators via a degenerate sum-frequency process, and achieved cross-band frequency conversion and amplification of converted signal through observing the cascaded nonlinear optical effects inside the microresonator. The study was published in Physics Review Letters. Coherent frequency conversion process has wide application in classical and quantum information fields such as communication, detection, sensing, and imaging. As a bridge connecting wavebands between fiber telecommunications and atomic transition, coherent frequency conversion is a necessary interface for distributed quantum computing and quantum networks.

Researchers realize synthetic gauge fields in single optomechanical resonator

 E-Mail IMAGE: (a-b) Multimode interaction in a single optomechanical resonator creates an extensible synthetic gauge field; (c-e) Responses of optical photons and phonons in the cavity under different synthetic magnetic field intensities.. view more  Credit: CHEN Yuan et al. The research team led by Prof. GUO Guangcan and Dr. DONG Chunhua from the University of Science and Technology of China realized synthetic gauge fields in a single optomechanical resonator by controlling geometric phase with the multimode interaction in the micro-resonator. By engineering a Hamiltonian, uncharged particles or bosonic excitations can acquire a path-dependent phase which realizes a synthetic magnetic field. Such synthetic gauge field can improve the precision of quantum many-body simulation and control over bosons.

© 2025 Vimarsana

vimarsana © 2020. All Rights Reserved.