A UMass Lowell geologist is among the researchers who have discovered a new type of manmade quasicrystal created by the first test blast of an atomic bomb.
E-Mail
Energy flows through a system of atoms or molecules by a series of processes such as transfers, emissions, or decay. You can visualize some of these details like passing a ball (the energy) to someone else (another particle), except the pass happens quicker than the blink of an eye, so fast that the details about the exchange are not well understood. Imagine the same exchange happening in a busy room, with others bumping into you and generally complicating and slowing the pass. Then, imagine how much faster the exchange would be if everyone stepped back and created a safe bubble for the pass to happen unhindered.
E-Mail
Researchers have used a technique similar to MRI to follow the movement of individual atoms in real time as they cluster together to form two-dimensional materials, which are a single atomic layer thick.
The results, reported in the journal
Physical Review Letters, could be used to design new types of materials and quantum technology devices. The researchers, from the University of Cambridge, captured the movement of the atoms at speeds that are eight orders of magnitude too fast for conventional microscopes.
Two-dimensional materials, such as graphene, have the potential to improve the performance of existing and new devices, due to their unique properties, such as outstanding conductivity and strength. Two-dimensional materials have a wide range of potential applications, from bio-sensing and drug delivery to quantum information and quantum computing. However, in order for two-dimensional materials to reach their full potential, their properties need to be fine-tune
Really big systems, like ocean currents and weather, work on really big scales. And so too does your plastic waste, according to new research from Janice Brahney from the Department of Watershed Sciences.