E-Mail
IMAGE: Photograph of the sheet-type piezoelectric system. Accurate biomonitoring is possible without being noticed; the ultrathin and soft sheet system realizes attachment of the device to the skin. view more
Credit: Osaka University
Osaka, Japan - Scientists at Osaka University, in cooperation with JOANNEUM RESEARCH (Weiz, Austria), introduced wireless health monitoring patches that use embedded piezoelectric nanogenerators to power themselves with harvested biomechanical energy. This work may lead to new autonomous health sensors as well as battery-less wearable electronic devices.
As wearable technology and smart sensors become increasingly popular, the problem of providing power to all of these devices become more relevant. While the energy requirements of each component may be modest, the need for wires or even batteries become burdensome and inconvenient. That is why new energy harvesting methods are needed. Also, the ability for integrated health monito
E-Mail
IMAGE: a Neutron diffraction patterns of CrBr3 measured at selected temperatures and refined by the Rietveld method. The experimental points and calculated profiles are shown. The ticks below represent the calculated. view more
Credit: Kazan Federal University
Two-dimensional (2D) materials with a single-layer thickness retaining magnetic order in atomically thin limit began to increase their scientific and technological significance after the successful synthesis of graphene and later investigations of van der Waals materials. CrBr3 has been known since the 60s as a van der Waals ferromagnet. Hansen, Tsubokawa, and Dillon have pioneered the work on magnetism in this compound. However, it has only recently been established that CrBr3 exhibits ferromagnetism when exfoliating to several layers and monolayers while saving its magnetic order. Nevertheless, no systematic experimental data simultaneously investigating the temperature behavior of the crystal, the magn
Credit: UrFU / Victoria Maltseva.
Physicists at the Ural Federal University (UrFU, Ekaterinburg, Russia) will print unique magnets, magnetic systems, soft magnetic elements with a 3D printer. Samples made with this printer can be useful in almost any field from medicine to space. For example, it can be used by robotic surgical assistants to unclog arteries and veins or to place stents. According to Aleksey Volegov, associate professor of the Department of magnetism and magnetic nanomaterials at the UrFU, now scientists are deciding which kind of magnets they will start printing first. These will be magnets based on either samarium or cobalt compounds. They can be used in submarines, at space stations, on ships. That is, in those areas where there are very strong temperature changes and we need magnets with special properties in terms of stability, said Aleksey Volegov. Or it will be simple magnets based on an alloy of neodymium, iron, and boron, which work at normal temperatures
Physicists on the hunt for a rarely seen magnetic spin texture have discovered another object that bears its hallmarks, hidden in the structure of ultra-thin magnetic films, that they have called an incommensurate spin crystal.
E-Mail
IMAGE: (a-b) Multimode interaction in a single optomechanical resonator creates an extensible synthetic gauge field; (c-e) Responses of optical photons and phonons in the cavity under different synthetic magnetic field intensities.. view more
Credit: CHEN Yuan et al.
The research team led by Prof. GUO Guangcan and Dr. DONG Chunhua from the University of Science and Technology of China realized synthetic gauge fields in a single optomechanical resonator by controlling geometric phase with the multimode interaction in the micro-resonator.
By engineering a Hamiltonian, uncharged particles or bosonic excitations can acquire a path-dependent phase which realizes a synthetic magnetic field. Such synthetic gauge field can improve the precision of quantum many-body simulation and control over bosons.