E-Mail
(Philadelphia, PA) - Like a failing fuel pump that causes a loss of engine power in a car, a diseased heart can take a serious toll on the body's performance. For some patients, tasks like walking up a flight of stairs or walking across a room eventually turn into exhausting endeavors. This is because, over time, regardless of the underlying cause, heart damage typically progresses, owing to a constant barrage of oxidative stress and toxic lipids that alter heart cell energetics and, ultimately, the ability of the heart to function normally.
Oxidative stress occurs when harmful oxygen-containing molecules outnumber helpful antioxidants, leading to damaging reactions with proteins, DNA, and other cell components. Now, in two new studies, researchers at the Lewis Katz School of Medicine at Temple University (LKSOM) show that in the heart, one molecule in particular, Kruppel-like factor (KLF)-5, single-handedly fuels both the generation of oxidizing molecules and the accumulation of toxic lipids known as ceramides in the heart, exacerbating heart dysfunction. The studies are the first to identify KLF5 as a common mediator of cardiac damage in animal models of different diseases that lead to abnormal heart function, including diabetes and heart attack.