Live Breaking News & Updates on Toyoaki Scholarship Foundation

Stay updated with breaking news from Toyoaki scholarship foundation. Get real-time updates on events, politics, business, and more. Visit us for reliable news and exclusive interviews.

Nanotechnology Now - Press Release: 3D design leads to first stable and strong self-assembling 1D nanographene wires


Home > Press > 3D design leads to first stable and strong self-assembling 1D nanographene wires
Schematic illustration of hierarchical structures of carbon nanofiber bundles made of bitten warped nanographene molecules.
CREDIT
NINS/IMS
Abstract:
Nanographene is flexible, yet stronger than steel. With unique physical and electronic properties, the material consists of carbon molecules only one atom thick arranged in a honeycomb shape. Still early in technological development, current fabrication methods require the addition of substituents to obtain a uniform material. Additive-free methods result in flimsy, breakable fibers until now.
3D design leads to first stable and strong self-assembling 1D nanographene wires
Tokyo, Japan | Posted on April 6th, 2021 ....

United States , Japan General , Jenny Pirillo , Taishi Nishihara , Kenichiro Itami , Kenta Kato , Nobuhiko Mitoma , Kiyofumi Takaba , Koji Yonekura , Taito Hatakeyama , Yusuke Nakanishi , Lawrencet Scott , Yasutomo Segawa , Takuma Kawada , Yuh Hijikata , Saori Maki Yonekura , Self Assembly , Institute Of Transformative Bio , Nagoya University , Collaboration Center , Itami Molecular Nanocarbon Project At Nagoya University , University Of Nevada , Japan Society For The Promotion Of Science , Wave Inc , Toyoaki Scholarship Foundation , School Of Science ,

3D design leads to first stable and strong self-assembling 1D nanographene wires


 E-Mail
IMAGE: Schematic illustration of hierarchical structures of carbon nanofiber bundles made of bitten warped nanographene molecules.
view more 
Credit: NINS/IMS
Nanographene is flexible, yet stronger than steel. With unique physical and electronic properties, the material consists of carbon molecules only one atom thick arranged in a honeycomb shape. Still early in technological development, current fabrication methods require the addition of substituents to obtain a uniform material. Additive-free methods result in flimsy, breakable fibers until now.
An international team of researchers has developed self-assembling, stable and strong nanographene wires. The results were published on March 24 in
Journal of the American Chemical Society. ....

United States , Japan General , Jenny Pirillo , Taishi Nishihara , Kenichiro Itami , Kenta Kato , Nobuhiko Mitoma , Kiyofumi Takaba , Koji Yonekura , Taito Hatakeyama , Yusuke Nakanishi , Lawrencet Scott , Yasutomo Segawa , Takuma Kawada , Yuh Hijikata , Saori Maki Yonekura , Development Division , National Institutes Of Natural Science , Technology Agency , Tokyo Metropolitan University , Institute Of Multidisciplinary Research For Advanced Materials , Institute Of Transformative Bio , Department Of Structural Molecular Science , Nagoya University , Collaboration Center , Itami Molecular Nanocarbon Project At Nagoya University ,