Substance abuse and addiction represent a significant public health problem that impacts multiple dimensions of society, including healthcare, the economy, and the workforce. In 2021, over 100,000 drug overdose deaths were reported in the US, with an alarming increase in fatalities related to opioids and psychostimulants. Understanding the fundamental gene regulatory mechanisms underlying addiction and related behaviors could facilitate more effective treatments. To explore how repeated drug exposure alters gene regulatory networks in the brain, we combined capped small (cs)RNA-seq, which accurately captures nascent-like initiating transcripts from total RNA, with Hi-C and single nuclei (sn)ATAC-seq. We profiled initiating transcripts in two addiction-related brain regions, the prefrontal cortex (PFC) and the nucleus accumbens (NAc), from rats that were never exposed to drugs or were subjected to prolonged abstinence after oxycodone or cocaine intravenous self-administration (IVSA). In
During a cruise from October to November 2019 along the West Antarctic Peninsula between 64.32ºS and 68.37ºS, we assessed the diversity and composition of the active microbial eukaryotic community within three size fractions: micro- (>20µm), nano- (20-5µm), and pico-size fractions (5-0.2µm). The communities and the environmental parameters displayed latitudinal gradients, and we observed a strong similarity in the microbial eukaryotic communities as well as the environmental parameters, between the sub-surface and the deep chlorophyll maximum (DCM) depths. Chlorophyll concentrations were low, and the mixed layer was shallow for most of the 17 stations sampled. The richness of the microplankton was higher in Marguerite Bay (our southernmost stations), compared to more northern stations, while the diversity for the nano- and pico-plankton was relatively stable across latitude. The microplankton communities were dominated by autotrophs, mostly diatoms, while mi
Human multitasking suffers from a central attentional bottleneck preventing parallel performance of central mental operations, leading to profound deferments in task performance. While previous research assumed that the deferment is caused by a mere waiting time (refractory period), we show that the bottleneck requires executive functions (EF; active scheduling account) accounting for a profound part of the deferment. Three participant groups with EF impairments (dyslexics, highly neurotics, deprived smokers) showed worse multitasking performance than respective control groups. Three further groups with EF improvements (videogamers, bilinguals, coffee consumers) showed improved multitasking. Finally, three groups performed a dual-task and different measures of EF (reading span, rotation span, symmetry span) and showed significant correlations between multitasking performance and working memory capacity. Demands on EF during multitasking may cause more errors, mental fatigue and stress,
More frequent droughts and an increased pressure on water resources, combined with social licence to operate, will inevitably decrease water resources available for fully irrigated cotton production. Therefore, the long-term future of the cotton industry will require more drought tolerant varieties that can perform well when grown in rainfed cropping regions often exposed to intermittent drought. A trait that limits transpiration (TRLim) under an increased vapour pressure deficit (VPD) may increase crop yield in drier atmospheric conditions and potentially conserve soil water to support crop growth later in the growing season. However, this trait has not been tested or identified in cotton production systems. This study tested the hypotheses that (1) genetic variability to the TRLim VPD trait exists among ten genotypes in the Australian cotton breeding program; (2) genotypes with a TRLim VPD trait use less water in high VPD environments, and (3) that variation in yield responses of cot
The loss of inner ear hair cells causes permanent hearing and balance deficits in humans and other mammals, but nonmammals recover after supporting cells (SCs) divide and replace hair cells. The proliferative capacity of mammalian SCs declines as exceptionally thick circumferential F-actin bands develop at their adherens junctions. We hypothesized that the reinforced junctions were limiting regenerative responses of mammalian SCs by impeding changes in cell shape and epithelial tension. Using micropipette aspiration and atomic force microscopy, we measured mechanical properties of utricles from mice and chickens. Our data show that the epithelial surface of the mouse utricle stiffens significantly during postnatal maturation. This stiffening correlates with and is dependent on the postnatal accumulation of F-actin and the cross-linker Alpha-Actinin-4 at SC-SC junctions. In chicken utricles, where SCs lack junctional reinforcement, the epithelial surface remains compliant. There, SCs un