An experimental study into the structural behaviour of Directed Energy Deposition-arc or wire arc additively manufactured (DED-arc AM and WAAM, respectively) steel double-lap shear bolted connections is presented. The mechanical properties of the material, which had a nominal yield stress of 420 MPa, were first determined by means of tensile coupon tests. Sixty connection specimens of two different nominal thicknesses and two print layer orientations were then tested to failure. The geometry of the test specimens was determined by 3D laser scanning, while the deformation and strain fields were measured during testing using digital image correlation. The observed failure modes included shear-out, net section tension, bearing and end-splitting, while a new hybrid mode of shear-out and net section tension was identified for the first time. The test results were compared against the predictions of current design specifications, namely AISI S100 and AS/NZS 4600 for cold-formed steel and AIS
An experimental investigation into the structural performance of wire arc additively manufactured (WAAM) steel single-lap shear bolted connections is presented in this paper. The steel wire had a nominal yield stress of 420 MPa. Sixty specimens of different thicknesses, printing strategies and geometric features including end distances and plate widths were tested and analysed. The shear-out, net section tension fracture, localised tearing and curl-bearing failure modes were observed and discussed, while end-splitting was also evident. Digital image correlation (DIC) was used for detailed monitoring and visualisation of the surface strain fields that developed during testing, providing valuable insight into the developed failure mechanisms. The experimental results, which generally followed the anticipated trends, were used to assess the applicability of current design specifications developed for conventional steel bolted connections to WAAM steel bolted connections. It was found that