In an article published in the journal Soil and Tillage Research, researchers carried out a series of constant-shear drained (CSD) triaxial tests on Q2 loess (silt loam, a loose aeolian deposit) in the South Jingyang Platform of China to better understand the mechanical failure process and properties of soil under the different rate of increase in pore water pressure RIPWPs.
Chinese Academy of Sciences
Biological soil crusts (BSCs), also called “living skin” on the soil surface, are a community of interacting autotrophic and heterotrophic organisms, which are found in many low-productivity ecosystems around the world.
In recent years, artificial BSCs have become one of the most promising biotechnological strategies for preventing soil erosion and restoring soil functionality in degraded drylands. However, how to quickly and massively cultivate BSCs and its field colonization method is the technical bottleneck of large-scale use of this achievement.
In a study published in Soil & Tillage Research, researchers from the Northwest Institute of Eco-Environment and Resources (NIEER) of the Chinese Academy of Sciences (CAS) investigated the effects of four soil substrates collected from the southeast edge of the temperate Tengger Desert in northern China on the colonization and development of artificial BSCs.