Abstract
Phase transition is common during (de)-intercalating layered sodium oxides, which directly affects the structural stability and electrochemical performance. However, the artificial control of phase transition to achieve advanced sodium-ion batteries is lacking, since the remarkably little is known about the influencing factor relative to the sliding process of transition-metal slabs upon sodium release and uptake of layered oxides. Herein, we for the first time demonstrate the manipulation of oxygen vacancy concentrations in multinary metallic oxides has a significant impact on the reversibility of phase transition, thereby determining the sodium storage performance of cathode materials. Results show that abundant oxygen vacancies intrigue the return of the already slide transition-metal slabs between O3 and P3 phase transition, in contrast to the few oxygen vacancies and resulted irreversibility. Additionally, the abundant oxygen vacancies enhance the electronic and ionic
Global Warming Solutions, Inc Announces Shareholder Update Letter
globenewswire.com - get the latest breaking news, showbiz & celebrity photos, sport news & rumours, viral videos and top stories from globenewswire.com Daily Mail and Mail on Sunday newspapers.
Abstract
Tin sulfides are promising anode materials for sodium-ion batteries (SIBs) for their high theoretical capacity and fast kinetics for Na storage. However, the severe volume expansion and intrinsically low charge conductivity fundamentally compromise their electrochemical performance. Addressing at the issue, SnS /SnS heterostructures are decorated on three-dimensional graphene nanosheets (3D GNS) framework, which is then shielded with a nanocarbon layer. In this nanocomposite, the SnS /SnS p-n heterostructures induce an internal electric field on the heterointerfaces to promote the charge transfer inside the material, which effectively ensures the rate capability of the material. Moreover, the 3D GNS provides a porous conductive network to accelerate the long-range transport of electron further enhancing its rate performance. Meanwhile, the dual-carbon structure would alleviate the volume expansion of SnS /SnS during cycling, ensuring improved stability. The integration of t