Wattzilla, a leader in electric vehicle charging solutions, has announced the launch of the world s first UL-listed SAE J3068 3-phase EVSE Family, which
Abstract
Phase transition is common during (de)-intercalating layered sodium oxides, which directly affects the structural stability and electrochemical performance. However, the artificial control of phase transition to achieve advanced sodium-ion batteries is lacking, since the remarkably little is known about the influencing factor relative to the sliding process of transition-metal slabs upon sodium release and uptake of layered oxides. Herein, we for the first time demonstrate the manipulation of oxygen vacancy concentrations in multinary metallic oxides has a significant impact on the reversibility of phase transition, thereby determining the sodium storage performance of cathode materials. Results show that abundant oxygen vacancies intrigue the return of the already slide transition-metal slabs between O3 and P3 phase transition, in contrast to the few oxygen vacancies and resulted irreversibility. Additionally, the abundant oxygen vacancies enhance the electronic and ionic