comparemela.com

Latest Breaking News On - Fold change - Page 1 : comparemela.com

Epitope editing enables targeted immunotherapy of acute myeloid leukaemia

Despite the considerable efficacy observed when targeting a dispensable lineage antigen, such as CD19 in B cell acute lymphoblastic leukaemia1,2, the broader applicability of adoptive immunotherapies is hampered by the absence of tumour-restricted antigens3–5. Acute myeloid leukaemia immunotherapies target genes expressed by haematopoietic stem/progenitor cells (HSPCs) or differentiated myeloid cells, resulting in intolerable on-target/off-tumour toxicity. Here we show that epitope engineering of donor HSPCs used for bone marrow transplantation endows haematopoietic lineages with selective resistance to chimeric antigen receptor (CAR) T cells or monoclonal antibodies, without affecting protein function or regulation. This strategy enables the targeting of genes that are essential for leukaemia survival regardless of shared expression on HSPCs, reducing the risk of tumour immune escape. By performing epitope mapping and library screenings, we identified amino acid changes that abr

Increasing lysine level improved methanol assimilation toward butyric acid production in Butyribacterium methylotrophicum | Biotechnology for Biofuels and Bioproducts

Methanol, a promising non-food fermentation substrate, has gained increasing interest as an alternative feedstock to sugars for the bio-based production of value-added chemicals. Butyribacterium methylotrophicum, one of methylotrophic-acetogenic bacterium, is a promising host to assimilate methanol coupled with CO2 fixation for the production of organic acids, such as butyric acid. Although the methanol utilization pathway has been identified in B. methylotrophicum, little knowledge was currently known about its regulatory targets, limiting the rational engineering to improve methanol utilization. In this study, we found that methanol assimilation of B. methylotrophicum could be significantly improved when using corn steep liquor (CSL) as the co-substrate. The further investigation revealed that high level of lysine was responsible for enhanced methanol utilization. Through the transcriptome analysis, we proposed a potential mechanism by which lysine confers improved methylotrophy via

Yumanity Therapeutics : January 2023 Developing next-generation immunotherapies that address cancer immune resistance KA (Nasdaq) - Form 8-K

© 2024 Vimarsana

vimarsana © 2020. All Rights Reserved.