comparemela.com

Dielectric Capacitors News Today : Breaking News, Live Updates & Top Stories | Vimarsana

The Engineer - High-energy-density capacitor promises multiple applications

Neodymium (Nd) Market | Alkane Resources, Arafura Resources, Ganzhou Qiandong Rare Earths Group

Neodymium Market Size, Share, Revenue, Trends And Drivers For 2023-2032

Low temperature sintering lead-free dielectric xBiScO3-(1-x)BaTiO3 for by Jincymol Joseph, Yumeng Du et al

Fabrication of ceramic capacitors requires technological breakthroughs to address growing concerns regarding sustainability, cost, and increased power consumption in the manufacturing process. Low temperature sintered xBiScO3-(1-x)BaTiO3 (BS-BT) with x = 0.4 is found to possess excellent energy storage performance and temperature stability. The grain size decreases from 3.5 μm sintered at 1100°C to less than 0.5 μm sintered at 800°C, leading to much improved breakdown field and energy storage properties. Recoverable energy density of 4.7 J/cm3 with a high efficiency of 89% was obtained at an electric field of 390 kV/cm, showing an excellent temperature stability over temperature range of 25–200°C and fatigue endurance for more than 105 cycles. Of particular importance is that the ceramic tape cofired with silver electrode over temperature range of 800–850°C shows no reaction and diffusion of silver at the electrode/ceramic interface, while a recoverable energy density of 3.3

Superior High-Temperature Energy Density in Molecular Semiconductor/Po by Bin Zhang, Xiao ming Chen et al

High-temperature dielectric polymers are in constant demand for the multitude of high-power electronic devices employed in hybrid vehicles, grid-connected photovoltaic and wind power generation, to name a few. There is still a lack, however, of dielectric polymers that can work at high temperature (> 150 °C). Herein, a series of all-organic dielectric polymer composites have been fabricated by blending the n-type molecular semiconductor 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA) with polyetherimide (PEI). Electron traps are created by the introduction of trace amounts of n-type small molecule semiconductor NTCDA into PEI, which effectively reduces the leakage current and improves the breakdown strength and energy storage properties of the composite at high temperature. Especially, excellent energy storage performance is achieved in 0.5 vol.% NTCDA/PEI at the high temperatures of 150 and 200 °C, e.g., ultrahigh discharge energy density of 5.1 J cm−3 at 150 °C and 3.2

© 2025 Vimarsana

vimarsana © 2020. All Rights Reserved.