The melting and solidification process of S32101 duplex stainless steel (DSS) was investigated using high-temperature confocal microscopy (HTCM). The method of concentric HTCM was employed to study microstructure evolution during the solidification process of S32101 DSS. This method could artificially create a meniscus-shaped solid–liquid interface, which dramatically improved the quality of in situ observations. During the heating stage, γ-austenite transformed to δ-ferrite, and this transformation manifested itself in the form of grain boundaries (GBs) moving. The effects of cooling rate on the solidification pattern and microstructure were revealed in the present research. An enhanced cooling rate led to a finer microstructure, and the solidification pattern changed from cellular to dendritic growth. As the temperature decreased, the commencement and growth of precipitates were observed. In this paper, the experimental data, including parameters such as temperature, cooling rate
Food and agriculture scientists are playing a critical role in figuring out how we will feed and clothe the 25 percent more people on the planet in 2050.
According to recent research in the journal Materials, the mechanical and thermal properties of iron-rich Al-Si alloys are associated with the presence of a large amount of the iron-rich phase (-Al5FeSi), whose unfavorable physiology not only separates the matrix but also induces tensile stress and interface incompatibility with the Al matrix.
Abstract
Microstructure difference between the center and the surface caused by temperature gradient during quenching process may lead to inhomogeneous properties of large-size products. A new finite element model (FEM) is proposed in the present work to precisely simulate temperature distribution of a bainite/martensite multiphase material during water-air alternating surface quenching process. Parameters like nonlinear variation of thermo-physical parameters, nonlinear variation of heat transfer coefficient, phase transformation latent heat, and transformation kinetics were considered when developing the FEM. In particular, the experimental investigation of bainite and martensite transformation kinetics provides the basis for the accurate calculation of microstructure. The model helps identify the temperature distribution, cooling rate profile, microstructure and hardness characteristic of Mn-Si-Cr bainitic/martensitic large-size products. A quarter of axle block experiments were