The routes by which foreign objects enter cells is well studied; however, their fate following uptake has not been explored extensively. Following exposure to synchrotron-sourced (SS) terahertz (THz) radiation, reversible membrane permeability has been demonstrated in eukaryotic cells by the uptake of nanospheres; nonetheless, cellular localization of the nanospheres remained unclear. This study utilized silica core-shell gold nanospheres (AuSi NS) of diameter 50 ± 5 nm to investigate the fate of nanospheres inside pheochromocytoma (PC 12) cells following SS THz exposure. Fluorescence microscopy was used to confirm nanosphere internalization following 10 min of SS THz exposure in the range 0.5-20 THz. Transmission electron microscopy followed by scanning transmission electron microscopy energy-dispersive spectroscopic (STEM-EDS) analysis was used to confirm the presence of AuSi NS in the cytoplasm or membrane, as single NS or in clusters (22% and 52%, respectively), with the remainder
CycPeptMPDB, a novel database created by Tokyo Tech researchers focused on the membrane permeability of cyclic peptides, could accelerate the development of drugs based on these promising compounds. This database was created by gathering published information on thousands of cyclic peptides and organizing it neatly in an online-accessible platform. Thanks to its search and visualization capabilities, CycPeptMPDB could pave the way to new computational and machine learning methods for screening and designing drugs with cyclic peptides.
Exposure to high-frequency (HF) electromagnetic fields (EMFs) at 18 GHz was previously found to induce reversible cell permeabilization in eukaryotic cells; however, the fate of internalized foreign objects inside the cell remains unclear. Here, silica core-shell gold nanospheres (Au NS) of 20 ± 5 nm diameter were used to study the localization of Au NS in pheochromocytoma (PC 12) cells after exposure to HF EMFs at 18 GHz. Internalization of Au NS was confirmed using fluorescence microscopy and transmission electron microscopy. Analysis based on corresponding scanning transmission electron microscopy energy-dispersive spectroscopy revealed the presence of the Au NS free within the PC 12 cell membrane, cytoplasm, enclosed within intracellular vesicles and sequestered in vacuoles. The results obtained in this work highlight that exposure to HF EMFs could be used as an efficient technique with potential for effective delivery of drugs, genetic material, and nanomaterials into cells for t
Comparative in vitro Release Test Using Franz Diffusion Cell for Luliconazole % 1 Cream with Reference Drug Product labmate-online.com - get the latest breaking news, showbiz & celebrity photos, sport news & rumours, viral videos and top stories from labmate-online.com Daily Mail and Mail on Sunday newspapers.