ALS neuron damage reversed with new compound
Northwestern University scientists have identified the first compound that eliminates the ongoing degeneration of upper motor neurons that become diseased and are a key contributor to ALS (amyotrophic lateral sclerosis), a swift and fatal neurodegenerative disease that paralyzes its victims.
In addition to ALS, upper motor neuron degeneration also results in other motor neuron diseases, such as hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS).
In ALS, movement-initiating nerve cells in the brain (upper motor neurons) and muscle-controlling nerve cells in the spinal cord (lower motor neurons) die. The disease results in rapidly progressing paralysis and death.
After 60 days of treatment, diseased brain cells look like healthy cells More research needed before clinical trial can be initiated
CHICAGO and EVANSTON - Northwestern University scientists have identified the first compound that eliminates the ongoing degeneration of upper motor neurons that become diseased and are a key contributor to ALS (amyotrophic lateral sclerosis), a swift and fatal neurodegenerative disease that paralyzes its victims.
In addition to ALS, upper motor neuron degeneration also results in other motor neuron diseases, such as hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS).
In ALS, movement-initiating nerve cells in the brain (upper motor neurons) and muscle-controlling nerve cells in the spinal cord (lower motor neurons) die. The disease results in rapidly progressing paralysis and death.