Live Breaking News & Updates on I Nio 2

Stay updated with breaking news from I nio 2. Get real-time updates on events, politics, business, and more. Visit us for reliable news and exclusive interviews.

"Stabilizing the surface of Li2NiO2 cathode additive by coating amorpho" by Sungmin Park, Min Jae You et al.

The formation of solid electrolyte interphase at the first cycle has raised technical issues of capacity loss in anode materials for lithium-ion batteries. As one solution, using Li-excess Li2NiO2 as a cathode additive aims to compensate for the initial Li+ consumption by anode materials using some of the high irreversible capacity. However, Li2NiO2 is insufficient for satisfying atmospheric stability, which induces spontaneous side reactions (e.g. Li2CO3 and LiOH), resulting in an increase of interfacial resistance for Li+ migration. In addition, the small but significant evolution of oxygen (O2) gas during the charge process over 3.8 V vs. Li/Li+ brings an extra caution for safety concerns. There is no doubt that structural stabilization of Li2NiO2 is a prerequisite for practical use in lithium-ion batteries. In this study, we propose a surface coating of amorphous niobium oxycarbide (NbOxCy) onto Li2NiO2 particles to improve their atmospheric stability, together with suppression of ....

I Nio 2 , Etal Oxy Carbide , Surface Coating ,

"Surface coating engineering of Li-excess cathode additive of lithium-i" by Hyo Bin Lee, Yun Seong Byeon et al.

Silicon based anodes are known to have a high specific capacity and low operating voltage (less than 0.5 V vs. Li/Li+). Even so, the solid electrolyte interphase (SEI) formation induces the severe capacity loss at the first cycle, known as a critical factor in reducing the energy density of lithium-ion batteries (LIBs). To improve the energy density by compensating the initial Li+ loss, the utilization of Li-excess cathode additives has been considered as the most practical strategy for supplying surplus Li+ during the initial charge. Li2NiO2 is an ideal cathode additive thanks to its large charge capacity (≥320 mAh g−1) and low Coulombic efficiency (∼35%) at the first cycle. Surface protection of Li2NiO2 is still required, however, due to its vulnerability to moisture (H2O) and carbon dioxide (CO2) in the ambient atmosphere. In addition, Li2NiO2 becomes more structurally unstable due to oxygen (O2) gas evolution, leading to the formation of microcracks. Herein, we introduce a fu ....

Li Excess Cathode , I Nio 2 , Itao 3 , Lithium Ion Battery , Surface Coating ,