This article introduces the Grey Wolf Optimizer (GWO) algorithm, a novel method aimed at tackling the challenges posed by the multi-objective Optimal Power Flow (OPF) problem. Drawing inspiration from the foraging behavior of grey wolves, GWO stands apart from traditional approaches by enhancing initial solutions without relying on gradient data collection from the objective function. In the domain of power system optimization, the OPF problem is widely acknowledged, involving constraints related to generator parameters, valve-point loading, reactive power, and active power. The proposed GWO technique is applied to IEEE 14-bus and 30-bus power systems, targeting four case objectives: minimizing cost with quadratic cost function, minimizing cost with inclusion of valve point, minimizing power loss, and minimizing both cost and losses simultaneously. For the IEEE-14 bus system, which requires meeting a power demand of 259 MW, GWO yields optimal costs of 827.0056 $/hr, 833.4691 $/hr, 1083
Energy trade model for interconnected renewable microgrids
pv-magazine.com - get the latest breaking news, showbiz & celebrity photos, sport news & rumours, viral videos and top stories from pv-magazine.com Daily Mail and Mail on Sunday newspapers.
Computational short cuts offer fast answers to complex supply chain problems - ScienceDaily
vervetimes.com - get the latest breaking news, showbiz & celebrity photos, sport news & rumours, viral videos and top stories from vervetimes.com Daily Mail and Mail on Sunday newspapers.
Computational Shortcuts Solve Supply Chain Complexity Quickly
miragenews.com - get the latest breaking news, showbiz & celebrity photos, sport news & rumours, viral videos and top stories from miragenews.com Daily Mail and Mail on Sunday newspapers.
Computational short cuts offer fast answers to complex supply chain problems
sciencedaily.com - get the latest breaking news, showbiz & celebrity photos, sport news & rumours, viral videos and top stories from sciencedaily.com Daily Mail and Mail on Sunday newspapers.