Given the increasing demand for energy and the rising cost of fossil fuels, the development of nuclear fission and fusion reactors has become a key priority. Recently, High Entropy Alloys (HEAs) and Medium Entropy Alloys (MEAs) have emerged as promising materials for use in nuclear reactors due to their unique properties, which include significant lattice distortion, high configurational entropy, reduced diffusivity, and the cocktail effect. In this study, we designed and analysed a series of FeCrV-based Refractory Medium-entropy Alloys (RMEAs) as structural materials in fusion reactors, using Density Functional Theory. By calculating the empirical parameters, we have verified the solid solution's structure stability of the FeCrV-based RMEA. We examined the mechanical, electronic, and irradiation resistance properties of these alloys and found that the incorporation of tungsten dopants could enhance both the mechanical properties and irradiation resistance of the materials, with t
Department of Chemistry and Biochemistry holds student research symposium
uccs.edu - get the latest breaking news, showbiz & celebrity photos, sport news & rumours, viral videos and top stories from uccs.edu Daily Mail and Mail on Sunday newspapers.
Multistate Energy Decomposition Analysis of Molecular Excited States
acs.org - get the latest breaking news, showbiz & celebrity photos, sport news & rumours, viral videos and top stories from acs.org Daily Mail and Mail on Sunday newspapers.
Hematite photocatalyst using sunlight energy simultaneously produces hydrogen and hydrogen peroxide
miragenews.com - get the latest breaking news, showbiz & celebrity photos, sport news & rumours, viral videos and top stories from miragenews.com Daily Mail and Mail on Sunday newspapers.