For practical sodium-ion batteries, both high electrochemical performance and cost efficiency of the electrode materials are considered as two key parameters. Prussian blue analogues (PBAs) are broadly recognized as promising cathode materials due to their low cost, high theoretical capacity, and cycling stability, although they suffer from low-crystallinity-induced performance deterioration. Herein, a facile “ice-assisted” strategy is presented to prepare highly crystallized PBAs without any additives. By suppressing structure defects, the cathode exhibits a high capacity of 123 mAh g–1 with initial Coulombic efficiency of 87.2%, a long cycling lifespan of 3000 cycles, and significantly enhanced high/low temperature performance and calendar life. Remarkably, the low structure distortion and high sodium diffusion coefficient have been identified via in situ synchrotron powder diffraction and first-principles calculations, while its thermal stability has been analyzed by in situ h