comparemela.com

Latest Breaking News On - Associate professor minna kaikkonen m - Page 1 : comparemela.com

Cell-type-specific insight into the function of risk factors in coronary artery disease

 E-Mail IMAGE: The researchers analysed the contribution of the five main cell types involved in coronary artery disease. view more  Credit: UEF/Raija Törrönen Using single cell technology, a new study sheds light on the significance of genetic risk factors for, and the diversity of cells involved in, the development of coronary artery disease. The researchers analysed human atherosclerotic lesions to map the chromatin accessibility of more than 7,000 cells. The chromatin accessibility is known to reflect active regions and genes in the genome. The findings were published in Circulation Research. Genome-wide association studies of the human genome have identified over 200 loci associated with coronary artery disease. More than 90% of them are located outside protein-coding genes, in so called cis-regulatory elements, whose significance in the pathogenesis of coronary artery disease remains unclear.

Study uncovers mechanisms by which microRNAs drive atherogenesis in a cell-type-specific manner

MicroRNAs may contribute to atherogenesis in a cell-type-dependent manner

Researchers at the University of Eastern Finland have uncovered potential mechanisms by which microRNAs (miRNA) drive atherogenesis in a cell-type-specific manner. Published in the Arteriosclerosis, Thrombosis, and Vascular Biology journal, the study provides novel insight into the miRNA profiles of the main cell types involved in atherosclerosis.

Researchers discover novel non-coding RNAs regulating blood vessel formation

 E-Mail Credit: UEF/ Raija Törrönen Researchers at the University of Eastern Finland have discovered previously unknown non-coding RNAs (ncRNAs) involved in regulating the gene expression of vascular endothelial growth factors (VEGF), the master regulators of angiogenesis. The study, conducted by the research groups of Associate Professor Minna Kaikkonen-Määttä and Academy Professor Seppo Ylä-Herttuala, provides a better understanding of the complex interplay of ncRNAs with gene regulation, which might open up novel therapeutic approaches in the future. The results were published in the Molecular and Cellular Biology Journal. Over the past years, the development of next generation sequencing techniques has revealed that around 97% of the human transcriptome is transcribed as non-coding RNAs, and although the role of the vast majority remains uncharacterized, many functions such as gene regulation have been proven.

Many genes associated with the risk of coronary artery disease act through the liver

According to a new study published in The American Journal of Human Genetics, more than one third of genetic variants that increase the risk of coronary artery disease regulate the expression of genes in the liver. These variants have an impact on the expression of genes regulating cholesterol metabolism, among other things. The findings provide valuable new insight into the genetics of coronary artery disease. The study was conducted in collaboration between the University of Eastern Finland, Kuopio University Hospital, the University of California Los Angeles, and the University of Arizona. Coronary artery disease (CAD) and its most important complication myocardial infarction (MI) are among the leading causes of death in the Western world. Both genetic and environmental factors contribute to the disease and recent genome-wide association studies have identified approximately 200 risk loci for CAD. However, the vast majority of such variants are located in the non-coding regions

© 2024 Vimarsana

vimarsana © 2020. All Rights Reserved.