Senescent cells drive age-related tissue dysfunction partially through the induction of a chronic senescence-associated secretory phenotype (SASP)1. Mitochondria are major regulators of the SASP; however, the underlying mechanisms have not been elucidated2. Mitochondria are often essential for apoptosis, a cell fate distinct from cellular senescence. During apoptosis, widespread mitochondrial outer membrane permeabilization (MOMP) commits a cell to die3. Here we find that MOMP occurring in a subset of mitochondria is a feature of cellular senescence. This process, called minority MOMP (miMOMP), requires BAX and BAK macropores enabling the release of mitochondrial DNA (mtDNA) into the cytosol. Cytosolic mtDNA in turn activates the cGAS–STING pathway, a major regulator of the SASP. We find that inhibition of MOMP in vivo decreases inflammatory markers and improves healthspan in aged mice. Our results reveal that apoptosis and senescence are regulated by similar mitochondria-depende
Celastrol Niosome Hydrogel for Psoriasis dovepress.com - get the latest breaking news, showbiz & celebrity photos, sport news & rumours, viral videos and top stories from dovepress.com Daily Mail and Mail on Sunday newspapers.
Science for just $15 USD.
A shared Toll for innate immunity
Toll-like receptor 2 (TLR2) is found in various tissues but is best known for its role in the innate immune system of activating sentinel immune cells in response to infection. Using conditional knockout mice, McCoy
et al. found that TLR2 also mediated innate immune signaling within the endothelium. TLR2 in endothelial cells activated proinflammatory signaling that promoted angiogenesis and immune cell recruitment in response to various “danger” signals, such as those produced during infection or tissue damage. Endothelial TLR2 also supported tumor growth in a mouse model of prostate cancer. These findings show that the endothelium contributes to innate immune responses and that TLR2 may be a therapeutic target in cancer (see also the Focus by Mahfoud and Petrova).