Water-based suspensions with nanoparticles as additives have been developed to replace oil-based lubricants for green manufacturing. Optimisation of nanosuspension formulation can enhance their performance and thereby reduce manufacturing costs. Nevertheless, developing high-performance water-based nanosuspensions requires an in-depth understanding of the role of nanoadditives in lubrication. This review summarises the formulation of water-based nanosuspensions, their tribological properties, and lubrication mechanisms. Technical issues are systematically addressed concerning the applications of nanosuspensions in the rolling of steels, machining of difficult-to-cut metals, and abrasive shaping of hard-brittle ceramics. This review facilitates understanding water-based nanolubrication to enable formulating nanosuspensions with a satisfactory manufacturing performance. The review outcomes indicate that oxide-based nanosuspensions are suitable candidates for metal forming and machining p
Applying nanomaterials and nanotechnology in lubrication has become increasingly popular and important to further reduce the friction and wear in engineering applications. To achieve green manufacturing and its sustainable development, water-based nanolubricants are emerging as promising alternatives to the traditional oil-containing lubricants that inevitably pose environmental issues when burnt and discharged. This review presents an overview of recent advances in water-based nanolubricants, starting from the preparation of the lubricants using different types of nanoadditives, followed by the techniques to evaluate and enhance their dispersion stability, and the commonly used tribo-testing methods. The lubrication mechanisms and models are discussed with special attention given to the roles of the nanoadditives. Finally, the applications of water-based nanolubricants in metal rolling are summarised, and the outlook for future research directions is proposed.