Magnetic two-dimensional materials consisting of one or a few atomic layers have only recently become known and promise interesting applications, for example for the electronics of the future. So .
2D nanomaterials play a critical role in realizing high-performance flexible electrodes for wearable energy storge devices, owing to their merits of large surface area, high conductivity and high strength. The electrode is a complex system and the performance is determined by multiple and interrelated factors including the intrinsic properties of materials and the structures at different scales from macroscale to atomic scale. Multiscale design strategies have been developed to engineer the structures to exploit full potential and mitigate drawbacks of 2D materials. Analyzing the design strategies and understanding the working mechanisms are essential to facilitate the integration and harvest the synergistic effects. This review summarizes the multiscale design strategies from macroscale down to micro/nano-scale structures and atomic-scale structures for developing 2D nanomaterials-based flexible electrodes. It starts with brief introduction of 2D nanomaterials, followed by analysis of
MIT researchers used ultrathin van der Waals materials to create an electron magnet that can be switched at room temperature. This type of magnet could be used to build magnetic processors or memories that would consume far less energy than silicon devices.
Since its practical isolation in 2004, graphene and related materials sparked enormous expectations in terms of technological application opportunity and potential economic value. In this context, .