E-Mail
IMAGE: (a) Theoretical output potential, specific capacity and energy density for the KO2 and other typical K-ion battery cathodes. (b) XRD pattern and TEM images of KO2-RuO2@rGO cathode composites. The XRD. view more
Credit: @Science China Press
There is an urgent need for high-energy-density rechargeable batteries to further satisfy the ever-growing demand for electrical energy storage devices. Triggering the O-related anionic redox activities (e.g. typical Li/Na/K-O2 battery, and Li/Na-rich cathodes) have been regarded as the most promising capacity-boosting strategy for batteries. However, the practical realization of Li/Na/K-O2 battery, a gas-open cell architecture, is severely plagued by some gaseous O2-related intrinsic defects. For example, porous air cathode is easily clogged by hosting the solid O2 reduction products, resulting in the practical stored energy reveals far below the theoretical value. Moreover, due to the phase changes between gaseous O2