Plants orient their organs in response to the gravity vector, with roots growing towards gravity and shoots growing in the opposite direction. The movement of statoliths responding to the inclination relative to the gravity vector is employed for gravity sensing in both plants and animals. However, in plants, the statolith takes the form of a high-density organelle, known as an amyloplast, which settles toward gravity within the gravity sensing cell. Despite the significance of this gravity sensing mechanism, the exact process behind it has eluded scientists for over a century. A groundbreaking study led by Professor Miyo Terao Morita at the National Institute for Basic Biology (NIBB) in Japan has revealed that the translocation of signaling proteins from amyloplasts to the plasma membrane is the key to deciphering this enigmatic mechanism. The research, titled “ Cell polarity linked to gravity sensing is generated by LZY translocation from statoliths to the plasma membrane,” is no
Highly sensitive technique helps measure the extent of cytoskeleton bundling
A research group from Kumamoto University, Japan has developed a highly sensitive technique to quantitatively evaluate the extent of cytoskeleton bundling from microscopic images. Until now, analysis of cytoskeleton organization was generally made by manually checking microscopic images.
The new method uses microscopic image analysis techniques to automatically measure cytoskeleton organization. The researchers expect it to dramatically improve our understanding of various cellular phenomena related to cytoskeleton bundling.
The cytoskeleton is a fibrous structure inside the cell made of proteins. It forms higher-order structures called networks and bundles which maintain or change the shape of the cell depending on its state. An accurate understanding of the structures woven by the cytoskeleton makes it possible to estimate the state of a cell.
E-Mail
IMAGE: Optical blur was artificially added to microscopic images of reticular and bundle cytoskeleton and the difference between the existing and proposed methods was assessed. In the right figure, the higher. view more
Credit: Associate Professor Takumi Higaki
A research group from Kumamoto University, Japan has developed a highly sensitive technique to quantitatively evaluate the extent of cytoskeleton bundling from microscopic images. Until now, analysis of cytoskeleton organization was generally made by manually checking microscopic images. The new method uses microscopic image analysis techniques to automatically measure cytoskeleton organization. The researchers expect it to dramatically improve our understanding of various cellular phenomena related to cytoskeleton bundling.