Espoo, Finland (SPX) Oct 31, 2023 -
In the pitch dark of the cosmos lurks an invisible kind of matter. Its presence is seen in the rippling ebb and flow of galaxies, but it s never been directly observed. What secrets lie beneath the
The QuTI consortium, partly financed by Business Finland, consists of 12 partners. In the project, Aalto will provide expertise in superconducting circuits and device development. This will allow researchers to more accurately detect microwave fields and temperatures and to perform quantum computing more efficiently.
SCI researchers are partners in three new Centres of Excellence: Life-Inspired materials, Randomness and structures, and Virtual laboratory for molecular level atmospheric transformations
Academy of Finland has selected 11 new Centres of Excellence, and School of Science researchers are involved in three of them: Life-Inspired Hybrid materials, Randomness and structures, and Virtual laboratory for molecular level atmospheric transformations. The new units were selected to the 2022–2029 programme.
Life-Inspired Hybrid Materials
Aalto University: School of Science researchers now involved in five Centres of Excellence indiaeducationdiary.in - get the latest breaking news, showbiz & celebrity photos, sport news & rumours, viral videos and top stories from indiaeducationdiary.in Daily Mail and Mail on Sunday newspapers.
Share
Aalto researchers have used an IBM quantum computer to explore an overlooked area of physics, and have challenged 100 year old cherished notions about information at the quantum level.
The rules of quantum physics – which govern how very small things behave – use mathematical operators called Hermitian Hamiltonians. Hermitian operators have underpinned quantum physics for nearly 100 years but recently, theorists have realized that it is possible to extend its fundamental equations to making use of operators that are not Hermitian. The new equations describe a universe with its own peculiar set of rules: for example, by looking in the mirror and reversing the direction of time you should see the same version of you as in the actual world. In their new paper, a team of researchers led by Docent