comparemela.com

Randaugment Cubuk News Today : Breaking News, Live Updates & Top Stories | Vimarsana

Contrastive Representation Learning

The goal of contrastive representation learning is to learn such an embedding space in which similar sample pairs stay close to each other while dissimilar ones are far apart. Contrastive learning can be applied to both supervised and unsupervised settings. When working with unsupervised data, contrastive learning is one of the most powerful approaches in self-supervised learning. Contrastive Training Objectives In early versions of loss functions for contrastive learning, only one positive and one negative sample are involved.

© 2025 Vimarsana

vimarsana © 2020. All Rights Reserved.