comparemela.com

Parse Matrices News Today : Breaking News, Live Updates & Top Stories | Vimarsana

Efficient Channel Estimation for RIS-Aided MIMO Communications with Un by Yabo Guo, Peng Sun et al

Reconfigurable intelligent surface (RIS) is very promising for wireless networks to achieve high energy efficiency, extended coverage, improved capacity, massive connectivity, etc. To unleash the full potentials of RIS-aided communications, acquiring accurate channel state information is crucial, which however is very challenging. For RIS-aided multiple-input and multiple-output (MIMO) communications, the existing channel estimation methods have computational complexity growing rapidly with the number of RIS units N (e.g., in the order of N2 or N3) and/or have special requirements on the matrices involved (e.g., the matrices need to be sparse for algorithm convergence to achieve satisfactory performance), which hinder their applications. In this work, instead of using the conventional signal model in the literature, we derive a new signal model obtained through proper vectorization and reduction operations. Then, leveraging the unitary approximate message passing (UAMP), we develop a m

Unitary Approximate Message Passing for Sparse Bayesian Learning by Man Luo, Qinghua Guo et al

Sparse Bayesian learning (SBL) can be implemented with low complexity based on the approximate message passing (AMP) algorithm. However, it does not work well for a generic measurement matrix, which may cause AMP to diverge. Damped AMP has been used for SBL to alleviate the problem at the cost of reducing convergence speed. In this work, we propose a new SBL algorithm based on structured variational inference, leveraging AMP with a unitary transformation (UAMP). Both single measurement vector and multiple measurement vector problems are investigated. It is shown that, compared to stateof- the-art AMP-based SBL algorithms, the proposed UAMPSBL is more robust and efficient, leading to remarkably better performance.

© 2025 Vimarsana

vimarsana © 2020. All Rights Reserved.