comparemela.com

Orthologous Groups News Today : Breaking News, Live Updates & Top Stories | Vimarsana

Comprehensive insights into the mechanism of keratin degradation and exploitation of keratinase to enhance the bioaccessibility of soybean protein | Biotechnology for Biofuels and Bioproducts

Keratin is a recalcitrant protein and can be decomposed in nature. However, the mechanism of keratin degradation is still not well understood. In this study, Bacillus sp. 8A6 can completely degrade the feather in 20 h, which is an efficient keratin degrader reported so far. Comprehensive transcriptome analysis continuously tracks the metabolism of Bacillus sp. 8A6 throughout its growth in feather medium. It reveals for the first time how the strain can acquire nutrients and energy in an oligotrophic feather medium for proliferation in the early stage. Then, the degradation of the outer lipid layer of feather can expose the internal keratin structure for disulfide bonds reduction by sulfite from the newly identified sulfite metabolic pathway, disulfide reductases and iron uptake. The resulting weakened keratin has been further proposedly de-assembled by the S9 protease and hydrolyzed by synergistic effects of the endo, exo and oligo-proteases from S1, S8, M3, M14, M20, M24, M42

Insights into the capability of the lignocellulolytic enzymes of Penicillium parvum 4-14 to saccharify corn bran after alkaline hydrogen peroxide pretreatment | Biotechnology for Biofuels and Bioproducts

Corn bran is a major agro-industrial byproduct from corn starch processing. It contains abundant arabinoxylan that can be converted into value-added chemicals via biotechnology. Corn bran arabinoxylan (CBAX) is one of the most recalcitrant xylans for enzymatic degradation due to its particular heterogeneous nature. The present study aimed to investigate the capability of the filamentous fungus Penicillium parvum 4-14 to enzymatically saccharify CBAX and reveal the fungal carbohydrate-active enzyme (CAZyme) repertoire by genome sequencing and secretome analysis. CBAX1 and CBAX2 with different branching degrees, together with corn bran residue (CBR) were generated from corn bran after alkaline hydrogen peroxide (AHP) pretreatment and graded ethanol precipitation. The protein blends E CBAX1, E CBAX2, and E CBR were produced by the fungus grown on CBAX1, CBAX2, or CBR, respectively. Under the optimal conditions, E CBAX1 released more than 80% xylose and arabinose from CBAX1 and CBAX2. Almo

Metabolomic, proteomic and lactylated proteomic analyses indicate lactate plays important roles in maintaining energy and C:N homeostasis in Phaeodactylum tricornutum | Biotechnology for Biofuels and Bioproducts

Phaeodactylum tricornutum accumulates lipids while the growth also increases under high CO2, shedding light on its potential application in the reduction of CO2 emissions and at the same time acquiring biodiesel raw materials. However, the sensing and transducing of high C:N signals and the related response mechanism(s) remained unknown. In this study, a multiple omics analysis was performed with P. tricornutum under low nitrogen (LN) and high CO2 (HC) conditions. The results indicated that 2-oxoglutarate was significantly increased under both LN and HC. Meanwhile, proteins involved in carbon concentration mechanism decreased, indicated that 2-oxoglutarate might regulate C:N balance through suppressing carbon fixation. Lactate, which acts in energy metabolism, signal transduction and ‘LactoylLys’ modification on proteins, was the most upregulated metabolite under both LN and HC conditions. Meanwhile, proteins involved in carbon, nitrogen and energy metabolisms were signific

Omics analysis coupled with gene editing revealed potential transporters and regulators related to levoglucosan metabolism efficiency of the engineered Escherichia coli | Biotechnology for Biofuels and Bioproducts

Bioconversion of levoglucosan, a promising sugar derived from the pyrolysis of lignocellulose, into biofuels and chemicals can reduce our dependence on fossil-based raw materials. However, this bioconversion process in microbial strains is challenging due to the lack of catalytic enzyme relevant to levoglucosan metabolism, narrow production ranges of the native strains, poor cellular transport rate of levoglucosan, and inhibition of levoglucosan metabolism by other sugars co-existing in the lignocellulose pyrolysate. The heterologous expression of eukaryotic levoglucosan kinase gene in suitable microbial hosts like Escherichia coli could overcome the first two challenges to some extent; however, no research has been dedicated to resolving the last two issues till now. Aiming to resolve the two unsolved problems, we revealed that seven ABC transporters (XylF, MalE, UgpB, UgpC, YtfQ, YphF, and MglA), three MFS transporters (KgtP, GntT, and ActP), and seven regulatory proteins (GalS, MhpR

Transcriptome-based analysis of the effects of salicylic acid and high light on lipid and astaxanthin accumulation in Haematococcus pluvialis

The unicellular alga Haematococcus pluvialis has achieved considerable interests for its capacity to accumulate large amounts of triacylglycerol and astaxanthin under various environmental stresses. To our knowledge, studies focusing on transcriptome research of H. pluvialis under exogenous hormones together with physical stresses are rare. In the present study, the change patterns at transcriptome level were analyzed to distinguish the multiple defensive systems of astaxanthin and fatty acid metabolism against exogenous salicylic acid and high light (SAHL) stresses. Results Based on RNA-seq data, a total of 112,463 unigenes and 61,191 genes were annotated in six databases, including NR, KEGG, Swiss-Prot, PFAM, COG and GO. Analysis of differentially expressed genes (DEGs) in KEGG identified many transcripts that associated with the biosynthesis of primary and secondary metabolites, photosynthesis, and immune system responses. Furthermore, 705 unigenes predicted as putative tran

© 2025 Vimarsana

vimarsana © 2020. All Rights Reserved.