A new Yale study reveals that astrocytes, a type of glial cell found in the central nervous system, develop at different rates in male and female mice,
A new Yale study revealing different rates of astrocyte development in male and female mice may have implications for our understanding of neurological disease.
E-Mail
A group of proteins called 4E-BPs, involved in memory formation, is the key to unlocking the antidepressant effect of ketamine in the brain, according to researchers from three Canadian universities. The discovery could lead to better and safer treatments for certain patients suffering from major depression.
Because more than 30% of patients are resistant to selective serotonin reuptake inhibitors (SSRI), the most commonly-prescribed antidepressants, finding an effective treatment for major depressive disorder is challenging.
Initially, ketamine was approved for anesthesia and pain relief. Since its discovery, researchers have been studying new uses for this drug, and ketamine was approved last year for patients with major depression who are treatment-resistant. Unlike standard antidepressants, which can take several weeks to have an effect, ketamine works within hours. Until now, little was known about the molecular mechanism that triggers the antidepressant effect of ke