Nanofiber filter captures almost 100% of coronavirus aerosols
Afilter made from polymer nanothreads blew three kinds of commercial masks out of the water by capturing 99.9% of coronavirus aerosols in an experiment.
“Our work is the first study to use coronavirus aerosols for evaluating filtration efficiency of face masks and air filters,” said corresponding author Yun Shen, a UC Riverside assistant professor of chemical and environmental engineering. “Previous studies have used surrogates of saline solution, polystyrene beads, and bacteriophages a group of viruses that infect bacteria.”
The study, led by engineers at UC Riverside and The George Washington University, compared the effectiveness of surgical and cotton masks, a neck gaiter, and electrospun nanofiber membranes at removing coronavirus aerosols to prevent airborne transmission. The cotton mask and neck gaiter only removed about 45%-73% of the aerosols. The surgical mask did much better, removing 98% of corona
NSF s mission is to advance the progress of science, a mission accomplished by funding proposals for research and education made by scientists, engineers, and educators from across the country.
Norovirus research: Clusters are resistant to UV disinfection Norovirus research: Clusters are resistant to UV disinfection
Clusters of a virus known to cause stomach flu are resistant to detergent and ultraviolet disinfection, according to new research co-led by Danmeng Shuai, Ph.D., an associate professor of civil and environmental engineering at the George Washington University and Nihal Altan-Bonnet, Ph.D., a senior investigator and the head of the Laboratory of Host-Pathogen Dynamics at the National Heart, Lung, and Blood Institute, part of the National Institutes of Health. The findings suggest the need to revisit current disinfection, sanitation and hygiene practices aimed at protecting people from noroviruses.
Credit: NIH
WASHINGTON (April 15, 2021) Clusters of a virus known to cause stomach flu are resistant to detergent and ultraviolet disinfection, according to new research co-led by Danmeng Shuai, Ph.D., an associate professor of civil and environmental engineering at the George Washington University and Nihal Altan-Bonnet, Ph.D., a senior investigator and the head of the Laboratory of Host-Pathogen Dynamics at the National Heart, Lung, and Blood Institute, part of the National Institutes of Health. The findings suggest the need to revisit current disinfection, sanitation and hygiene practices aimed at protecting people from noroviruses.
Noroviruses are the leading cause of gastroenteritis around the world, with over 21 million cases each year in the United States alone.