comparemela.com

Martin Schnermann News Today : Breaking News, Live Updates & Top Stories | Vimarsana

Nanotechnology Now - Press Release: How photoblueing disturbs microscopy

Nanotechnology Now Home > Press > How photoblueing disturbs microscopy Confocal fluorescence images of glass surfaces coated with the cyanine dyes Alexa Fluor 647 (a) and CF660C (b) and with carborhodamine dye ATTO647N (c) after light excitation at 568 nanometres (nm). By exciting the red-absorbing dyes at 640 nm in certain areas (negative images top right), dyes are photoconverted there and it is possible to write letters on the surface that were excited at 568 nm and fluoresce at about 580 nm. The carborhodamine dye shows more efficient photobluing than the cyanine dyes. CREDIT Team Markus Sauer / University of Wuerzburg Abstract: The latest developments in fluorescence microscopy make it possible to image individual molecules in cells or molecular complexes with a spatial resolution of up to 20 nanometres. However, under certain circumstances, an effect occurs that falsifies the results: the laser light used can cause very reactive oxygen molecules to form in the sample. T

How photoblueing disturbs microscopy

 E-Mail IMAGE: Confocal fluorescence images of glass surfaces coated with the cyanine dyes Alexa Fluor 647 (a) and CF660C (b) and with carborhodamine dye ATTO647N (c) after light excitation at 568 nanometres. view more  Credit: Team Markus Sauer / University of Wuerzburg The latest developments in fluorescence microscopy make it possible to image individual molecules in cells or molecular complexes with a spatial resolution of up to 20 nanometres. However, under certain circumstances, an effect occurs that falsifies the results: the laser light used can cause very reactive oxygen molecules to form in the sample. These can then damage the fluorescent dyes used to such an extent that they no longer fluoresce. Among microscopy experts, this effect is known as photobleaching.

© 2025 Vimarsana

vimarsana © 2020. All Rights Reserved.