comparemela.com

Latest Breaking News On - Lose prediction - Page 1 : comparemela.com

FTX Exchange Under Investigation for Alleged Fraud and Diligence Failures

FTX Exchange Under Investigation for Alleged Fraud and Diligence Failures
3ajlnews.com - get the latest breaking news, showbiz & celebrity photos, sport news & rumours, viral videos and top stories from 3ajlnews.com Daily Mail and Mail on Sunday newspapers.

Accurate and Fast Deep Learning Dose Prediction for a Preclinical Micr by Florian Mentzel, Jason Paino et al

Microbeam radiation therapy (MRT) utilizes coplanar synchrotron radiation beamlets and is a proposed treatment approach for several tumor diagnoses that currently have poor clinical treatment outcomes, such as gliosarcomas. Monte Carlo (MC) simulations are one of the most used methods at the Imaging and Medical Beamline, Australian Synchrotron to calculate the dose in MRT preclinical studies. The steep dose gradients associated with the 50 (Formula presented.) m-wide coplanar beamlets present a significant challenge for precise MC simulation of the dose deposition of an MRT irradiation treatment field in a short time frame. The long computation times inhibit the ability to perform dose optimization in treatment planning or apply online image-adaptive radiotherapy techniques to MRT. Much research has been conducted on fast dose estimation methods for clinically available treatments. However, such methods, including GPU Monte Carlo implementations and machine learning (ML) models, are un

Small beams, fast predictions: a comparison of machine learning dose p by F Mentzel, K Kröninger et al

Background: Dose calculations for novel radiotherapy cancer treatments such as proton minibeam radiation therapy is often done using full Monte Carlo (MC) simulations. As MC simulations can be very time consuming for this kind of application, deep learning models have been considered to accelerate dose estimation in cancer patients. Purpose: This work systematically evaluates the dose prediction accuracy, speed and generalization performance of three selected state-of-the-art deep learning models for dose prediction applied to the proton minibeam therapy. The strengths and weaknesses of those models are thoroughly investigated, helping other researchers to decide on a viable algorithm for their own application. Methods: The following recently published models are compared: first, a 3D U-Net model trained as a regression network, second, a 3D U-Net trained as a generator of a generative adversarial network (GAN) and third, a dose transformer model which interprets the dose prediction as

Fast and accurate dose predictions for novel radiotherapy treatments i by Florian Mentzel, Kevin Kröninger et al

Purpose: Novel radiotherapy techniques like synchrotron X-ray microbeam radiation therapy (MRT) require fast dose distribution predictions that are accurate at the sub-mm level, especially close to tissue/bone/air interfaces. Monte Carlo (MC) physics simulations are recognized to be one of the most accurate tools to predict the dose delivered in a target tissue but can be very time consuming and therefore prohibitive for treatment planning. Faster dose prediction algorithms are usually developed for clinically deployed treatments only. In this work, we explore a new approach for fast and accurate dose estimations suitable for novel treatments using digital phantoms used in preclinical development and modern machine learning techniques. We develop a generative adversarial network (GAN) model, which is able to emulate the equivalent Geant4 MC simulation with adequate accuracy and use it to predict the radiation dose delivered by a broad synchrotron beam to various phantoms. Methods: The

© 2024 Vimarsana

vimarsana © 2020. All Rights Reserved.