The utilization of lithium (Li) metal as an anode has attracted significant attention for high-energy Li batteries. Unfortunately, uncontrollable Li dendrite cannot be avoided during Li plating and stripping. Much intensive research has been conducted to suppress the dendritic growth by confinement of metallic Li in host architectures. Recently, zeolitic imidazolate frameworks (ZIFs) with a porous features have been used to explore a new approach to storing the Li metal with the advantages of their structural and chemical stability, large surface areas, and large pore cavities. Herein, we investigate the storage capability of metallic Li in a porous carbon framework derived from ZIFs as a function of carbonization temperature. Diversities in pore volumes and channels, the degree of crystallinity, the amount of residual zinc (Zn) metal, and the electrical conductivity can all be controlled by temperature. We demonstrate that well-connected pore channels and adequate electrical conductiv
Three-dimensional (3D) host architectures have emerged as promising strategies for resolving the critical issues of Li metal anodes, namely, severe volume changes and growth of Li dendrites during battery cycling. However, preferential Li plating on top of the host architecture often causes early cell failure. Herein, we demonstrate that the controlled heterogeneity of interfacial activity and the porous structure at the electrode level enables confined Li metal storage in host architectures consisting of metal-organic framework (MOF)-derived carbon. 3D electrochemical simulations show that carbon activity (lithiophilicity) and interparticle porosity play critical roles in controlling the competing kinetics of charge transfer and Li+ transport, thereby regulating the Li-plating behavior. The enhanced lithiophilicity at the electrode bottom, combined with the increased interparticle porosity at the top, is predicted to promote the preferential nucleation of Li and subsequent upward grow
Li metal has been regarded as a promising anode for rechargeable batteries with high energy densities. However, the growth of Li dendrites and severe volume changes in the Li anode still hinder its practical use. Three-dimensional (3D) host structures have recently attracted significant attention as an effective strategy to resolving these problems. Herein, we demonstrate reversible Li metal storage in carbon hosts with strong Li–host interactions derived from metal-organic frameworks (MOFs). The combined experimental and computational modeling studies reveal that galvanically displaced Ag enhances Li–host interactions and the spatial distribution characteristics of Ag play a crucial role in controlling Li storage behavior and reversibility. The atomic Ag clusters trigger the outward growth of Li from the internal pores of the host and enables stable battery cycling, whereas the surface-anchored Ag nanoparticles induce uneven Li plating on the outer surface of the carbon host, resu