E-Mail
Cities have become the focus of global climate mitigation efforts because as they are responsible for 60-70% of energy-related CO2 emissions. As the world is increasingly urbanized, it is crucial to identify cost-effective pathways to decarbonize and enhance the resilience of cities, which ensure the well-being of their dwellers. In this study, we propose a SolarEV City concept, in which integrated systems of cities roof-top photovoltaics and electric vehicles (EVs) supply affordable and dispatchable CO2-free electricity to urban dwellers.
The SolarEV City assumes that 70% of toof-top of cities at maximum are used for PV and all passenger vehciles are converted to EV in cities being used as batteries for PV electricity. We conducted technoeconomic analyses to evaluate the concept in terms of CO2 emission reduction, cost savings, energy suffciency, self-sufficiency, self-consumption for nine Japanese urban areas (Kyoto City, Hiroshima City, Korimaya City, Okayama City,