Date Time
New Material Could Harvest Water All Day Long
Micro-engineered, bioinspired design allows the material to collect moisture from cool fog as well as generating and collecting steam under sun
Tiny structures inspired by the shape of cactus spines allow a newly created material to gather drinkable water from the air both day and night, combining two water-harvesting technologies into one.
The material, a micro-architected hydrogel membrane (more on that later), can produce water through both solar steam-water generation and fog collection-two independent processes that typically require two separate devices. A paper about the material was published in Nature Communications on May 14.
Date Time
Tiny Shape-Shifting Polymers Developed for Potential Medical Applications
Engineers at Caltech have developed a process for generating three-dimensional architected polymers with heat-dependent “shape memory” properties: that is, when heated, the material folds and unfolds itself into a new preordained shape. In this video, Caltech graduate student Luizetta Elliott explains how these shape memory polymers could one day be used to perform complex tasks inside the human body, such as unclogging a blocked artery or pulling out a blood clot. Elliott worked on micro-architected shape polymers in the lab of Julia R. Greer, the Ruben F. and Donna Mettler Professor of Materials Science, Mechanics and Medical Engineering, who is a pioneer of “nano-architected materials.” Their paper, co-authored with alumna Erika Salzman (BS ’20) is titled “Stimuli Responsive Shape Memory Microarchitectures” and was published in the journal Advanced Functional Materials on December 8