comparemela.com

Latest Breaking News On - Ion implantation - Page 3 : comparemela.com

Insights on the Semiconductor Manufacturing Equipment

Ultra-small cobalt particles embedded in titania by ion beam synthesis by Abdulhakim Bake, Md Rezoanur Rahman et al

This Data-in-brief article includes datasets of electron microscopy, polarised neutron reflectometry and magnetometry for ultra-small cobalt particles formed in titania thin films via ion beam synthesis. Raw data for polarised neutron reflectometry, magnetometry and the particle size distribution are included and made available on a public repository. Additional elemental maps from scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) are also presented. Data were obtained using the following types of equipment: the NREX and PLATYPUS polarised neutron reflectometers; a Quantum Design Physical Property Measurement System (14 T); a JEOL JSM-6490LV SEM, and a JEOL ARM-200F scanning transmission electron microscope (STEM). The data is provided as supporting evidence for the article in Applied Surface Science (A. Bake et al., Appl. Surf. Sci., vol. 570, p. 151068, 2021, DOI 10.1016/j.apsusc.2021.151068), where a full discussion is given. The additional supplementary r

Cu-Ion-Implanted and Polymeric Carbon Nitride-Decorated TiO2Nanotube A by Liqun Wang, Wenping Si et al

Photoelectrochemical (PEC) water splitting over TiO2 photoanodes is a promising strategy for hydrogen production due to its eco-friendly, energy-saving, and low-cost nature. However, the intrinsic drawbacks of TiO2, i.e., the too wide band gap and rapid exciton recombination, significantly limit further enhancement of its performance. Herein, we report a TiO2 nanotube array (TNA), which is implanted by Cu ions and decorated by polymeric carbon nitride (PCN) nanosheets, as a photoanode for the high-efficiency PEC water splitting. In such designed material, Cu-ion implantation can effectively tailor the electronic structure of TiO2, thus narrowing the band gap and enhancing the electronic conductivity. Meanwhile, the PCN decoration induces TiO2/PCN heterojunctions, enhancing the visible light absorption and accelerating the exciton separation. Upon this synergistic effect, the modified TNA photoanode shows significantly improved PEC capability. Its photocurrent density, solar-to-hydrogen

Tuning the electromechanical properties and polarization of Aluminium by Holger Fiedler, Vedran Jovic et al

Abstract We report the evolution of uniaxial strain, resulting in an expansion of the c-axis in the wurtzite structure by up to 1 %, without significant degradation of the crystal structure of 30 keV Zr implanted epitaxial AlN films, grown on Si substrates. Raman and X-ray absorption spectroscopies demonstrated that the dominant defects are Zr , V and V . The uniaxial strain can be attributed to a weakening of the Metal-N π bond along the c-axis. Monte Carlo simulations further predict the formation of a cation-rich region within the Zr implantation range, along with a buried anion-rich layer for all investigated fluences. The anion-rich layer undergoes a polarity inversion, which was experimentally confirmed by high-resolution high-angle annular dark field scanning transmission electron microscopy. Those microstructural changes influence the macroscopic electromechanical properties of AlN. The effective piezoelectric coefficient, d , reduces from (7.0 ± 0.5) pm/V to (5.2 ± 0.5

© 2025 Vimarsana

vimarsana © 2020. All Rights Reserved.