Wright Lab researchers developing new neutrino detector technologies
May 5, 2021
A team of Wright Lab researchers from the Yale High Energy Neutrino Physics group, including associate research scientist Domenico Franco and graduate students Lee Hagaman and Giacomo Scanavini, have recently joined the research and development (R&D) effort for a new detector technology that is being developed for use by the international ArgonCube collaboration. ArgonCube, with its novel modular Liquid Argon Time Projection Chamber (LArTPC) detector design and innovative technique of pixelated charge readout, will serve as the near detector for the Deep Underground Neutrino Experiment (DUNE).
DUNE is a planned neutrino experiment with a detector composed of multiple LArTPCs. This experiment will send a high energy neutrino beam over a distance of 1,300 km from Fermilab in Batavia, IL to the Sanford Underground Research Facility (SURF) in Lead, South Dakota. DUNE will be used to study a phenomenon
Investigating the wave properties of matter with vibrating molecules eurekalert.org - get the latest breaking news, showbiz & celebrity photos, sport news & rumours, viral videos and top stories from eurekalert.org Daily Mail and Mail on Sunday newspapers.
E-Mail
IMAGE: Surface mechanical attrition treatment (SMAT) of magnesium improves its strength and corrosion resistance. (Source: IFJ PAN) view more
Credit: Source: IFJ PAN
Materials used in biomedicine must be characterized by controlled biodegradability, sufficient strength and total absence of toxicity to the human body. The search for such materials is, therefore, not a simple task. In this context, scientists have been interested in magnesium for a long time. Recently, using such techniques as positron annihilation spectroscopy, the researchers were able to demonstrate that magnesium subjected to surface mechanical attrition treatment obtains the properties necessary for a biocompatible material.
Materials showing controlled corrosion rate are gaining more and more interest. This applies in particular to biomedicine, where implants made of natural or synthetic polymers are used. Their advantage is that the rate of decomposition can be easily adjusted under physi