Enhanced version of CureVac’s COVID-19 vaccine could help address supply shortages
Researchers in Germany have demonstrated the preclinical effectiveness of a next-generation coronavirus disease 2019 (COVID-19) vaccine at enhancing antibody responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
The researchers from CureVac AG in Tübingen and the Friedrich-Loeffler-Institute in Greifswald-Insel Riems say that compared with their previous vaccine candidate – CvnCoV – the second-generation CV2CoV vaccine accelerated induction of neutralizing antibody titers in rats just two weeks following the first dose.
The vaccine also elicited significant cross-neutralization of circulating SARS-CoV-2 variants of concern.
“This vaccine was developed to further increase vaccine efficacy, thereby setting the stage to tackle future challenges of the SARS-CoV-2 pandemic,” says Susanne Rauch and colleagues.
Kyoto University The Haruhisa Inoue lab uses iPS cells to find potential drugs against RNA viruses. The last year has seen intensive research around the world on SARS-CoV-2, the virus responsible for the COVID-19 pandemic. Despite several vaccines already available, the rapid mutation of the virus is causing concern that the infection will continue to spread. A new study led by CiRA Professor Haruhisa Inoue shows that iPS cells can assist in finding effective drugs for RNA viruses. HIV, Ebola virus, and now the SARS-CoV-2 pandemic, in the last half century, RNA viruses have been responsible for many of society’s greatest health calamities. One of the great challenges in managing these viruses is their rapid mutation rate. Indeed, it is possible that as SARS-Cov-2 continues to mutate, it may need, like influenza, new vaccines annually.
Study shows how D614G variant gains upper hand over original SARS-CoV-2 virus
Prior to the emergence of new mutants of the coronavirus, such as the British variant B.1.1.7, the SARS-CoV-2 variant named D614G had already mutated from the original SARS-CoV-2 pathogen that triggered the pandemic.
D614G has rapidly spread to become the most abundant variant worldwide and this D614G mutation remains in all the new emerging variants. An international team including researchers from Bern has now been able to demonstrate in both the laboratory and in animal models why the D614G variant was able to gain the upper hand over the original SARS-CoV-2 virus.