About this Event
Abstract
The total system inertia (H) is the primary source of electricity system robustness to frequency disturbances. The traditional large synchronous generators directly connected to the grid are the primary sources of inertia, and they play a crucial role in limiting the rate of change of frequency (ROCOF) and provide a natural response to the system frequency changes following an unscheduled loss of generation or demand from the power system.
The transition to a low carbon society is the driving force pushing the traditional power system to increase the volume of non-synchronous technologies, which mainly use power converters (PCs) as an interface to the power network. The PCs decoupled the primary source from the power network; therefore, they are not able to contribute with “natural” inertia in the same way as classical synchronous generators. During a system frequency disturbance (SFD), the system frequency will change at a rate initially det