Researchers develop ultra-small nanomedicines to target intractable cancers
Ultra-small nanomedicines of approximately 18 nm were fabricated by dynamic ion-pairing between Y-shaped block copolymers and nucleic acid drugs, such as siRNA and antisense drugs.
Chemically modified and double-stranded oligonucleotides dramatically enhanced the stability of the ultra-small nanomedicines in the blood circulation.
The ultra-small size allows for high permeability in cancer tissues by slipping through the cracks in tumor vasculatures and stromal tissues.
Clinical trials and preclinical studies using the developed ultra-small nanomedicines are proceeding for cancer therapy.
Published in the website of
Journal of Controlled Release on January 6.
Main body
The Innovation Center of NanoMedicine (Director General: Prof. Kazunori Kataoka, Location: Kawasaki-City in Japan, Abbreviation: iCONM) recently developed an ultra-small nanomedicines called Unit Polyion Complex (uPIC) in collaboratio
Loading video.
VIDEO: Nanomedicines consisting of one molecule of oligonucleotide and one or two
molecules of Y-shaped block copolymer(s), of which the size is approximately
18 nm and is in dynamic equilibrium with free Y-shaped. view more
Credit: 2021 Innovation Center of NanoMedicine
Summary
Ultra-small nanomedicines of approximately 18 nm were fabricated by dynamic ion-pairing between Y-shaped block copolymers and nucleic acid drugs, such as siRNA and antisense drugs.
Chemically modified and double-stranded oligonucleotides dramatically enhanced the stability of the ultra-small nanomedicines in the blood circulation.
The ultra-small size allows for high permeability in cancer tissues by slipping through the cracks in tumor vasculatures and stromal tissues.