DNA vaccine candidate induces potent immunity, offers protective efficacy in non-human primate models
A synthetic DNA vaccine candidate for Middle East respiratory syndrome coronavirus (MERS-CoV) developed at The Wistar Institute induced potent immune responses and afforded protective efficacy in non-human primate (NHP) models when given intradermally in abbreviated, low-dose immunization regimen.
A similar vaccine candidate was previously shown to be safe and tolerable with a three-dose intramuscular injection regimen in a recently completed human phase 1 study and is currently in expanded studies of phase 1/2a trial. New results were published today in
JCI Insight.
While several vaccine products are being advanced against MERS and other coronaviruses, low-dose delivery and shortened regimes are crucial to rapidly induce protective immunity, particularly during emerging outbreaks, as the current SARS-CoV-2 pandemic has emphasized.
The Wistar Institute
PHILADELPHIA (April 22, 2021) A synthetic DNA vaccine candidate for Middle East respiratory syndrome coronavirus (MERS-CoV) developed at The Wistar Institute induced potent immune responses and afforded protective efficacy in non-human primate (NHP) models when given intradermally in abbreviated, low-dose immunization regimen. A similar vaccine candidate was previously shown to be safe and tolerable with a three-dose intramuscular injection regimen in a recently completed human phase 1 study and is currently in expanded studies of phase 1/2a trial.
New results were published today in JCI Insight.
“While several vaccine products are being advanced against MERS and other coronaviruses, low-dose delivery and shortened regimes are crucial to rapidly induce protective immunity, particularly during emerging outbreaks, as the current SARS-CoV-2 pandemic has emphasized,” said David B. Weiner, Ph.D., Wistar executive vice president, director of the Vaccine & Im
Press release content from Globe Newswire. The AP news staff was not involved in its creation.
DARPA and JPEO-CBRND Award $37.6M to The Wistar Institute and Collaborators at INOVIO, .
The Wistar InstituteDecember 15, 2020 GMT
PHILADELPHIA, Dec. 15, 2020 (GLOBE NEWSWIRE) A team of scientists from The Wistar Institute, INOVIO, AstraZeneca, the Perelman School of Medicine at the University of Pennsylvania, and Indiana University has received a $37.6 million award over two years from the Defense Advanced Research Projects Agency (DARPA) and the Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND) for rapid preclinical development and translational studies of DNA-encoded monoclonal antibodies (DMAbs) as countermeasures for COVID-19.
Credit: The Wistar Institute
PHILADELPHIA (Dec. 15, 2020) A team of scientists from The Wistar Institute, INOVIO, AstraZeneca, the Perelman School of Medicine at the University of Pennsylvania, and Indiana University has received a $37.6 million award over two years from the Defense Advanced Research Projects Agency (DARPA) and the Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND) for rapid preclinical development and translational studies of DNA-encoded monoclonal antibodies (DMAbs) as countermeasures for COVID-19.
DMAbs, unlike conventional therapeutic antibodies, are administered as genetic blueprints that instruct the patient s body to build its own highly specific antibodies against pathogens, such as bacteria and viruses, and as immunotherapeutics for cancer. Conceptually DMAbs have advantages over traditional monoclonal antibodies in scale-up and delivery, which would rapidly benefit large populations.