Physicists at the Macroscopic Quantum Matter Research Group, School of Physics, University College Cork, have unveiled a new type of superconductor that could pave the way for transformative advancements in quantum computing. This cutting-edge material, called uranium ditelluride (UTe2),
Spin-triplet topological superconductors should exhibit many unprecedented electronic properties, including fractionalized electronic states relevant to quantum information processing. Although UTe2 may embody such bulk topological superconductivity1–11, its superconductive order parameter Δ(k) remains unknown12. Many diverse forms for Δ(k) are physically possible12 in such heavy fermion materials13. Moreover, intertwined14,15 density waves of spin (SDW), charge (CDW) and pair (PDW) may interpose, with the latter exhibiting spatially modulating14,15 superconductive order parameter Δ(r), electron-pair density16–19 and pairing energy gap17,20–23. Hence, the newly discovered CDW state24 in UTe2 motivates the prospect that a PDW state may exist in this material24,25. To search for it, we visualize the pairing energy gap with μeV-scale energy resolution using superconductive scanning tunnelling microscopy (STM) tips26–31. We detect three PDWs, eac