MyJournals.org - Science - Remote Sensing, Vol. 15, Pages 2376: Evaluation of CMIP6 Models and Multi-Model Ensemble for Extreme Precipitation over Arid Central Asia (Remote Sensing)
Carbon-climate feedbacks, which amplifies or attenuates atmospheric CO2 from fossil fuel emissions, are one of the largest sources of uncertainty in climate projections. However, these feedbacks depend both on temperature and its coupling to water and energy cycles, especially in the tropics. We show that atmospheric aridity - quantified as vapor pressure deficit (VPD) - is a good proxy for this coupling. Tropical VPD is strongly correlated to the global CO2 growth rate (CGR) with observed present-day sensitivities of -2.5 ± 0.4 GtC mb-1 yr-1. The sensitivity of CGR to tropical VPD interannual variability has increased by a factor of 1.7 ± 0.3 in the 21st century. A combination of causality and statistical analysis point to mechanistic moisture drivers of the VPD-CGR sensitivities, independent of temperature. Observational records provide evidence that tropical atmospheric aridity is linked to both water deficit and spatially correlated with evaporative fraction suggesting that CGR v