This paper aims to scrutinise the effectiveness of a re-entrant auxetic honeycomb-core sandwich panel (AHSP) to protect reinforced concrete (RC) slab under close-in and far-field detonations of high explosive. A series of quarter symmetric 3D comprehensive numerical models were developed by using Arbitrary Lagrangian Eulerian (ALE) formulation in LS-DYNA hydrocode. Strain rate effects of the rate sensitive materials were employed in the model to consider dynamic behaviour of the materials during blast loading. The developed numerical model was validated with the documented experimental results. Deformation patterns, energy absorption, overpressure damping, blast pressure deflection, and stress-transmission to the protected structure were investigated with the computational models. Furthermore, the performance of AHSP sacrificial protective structure was compared with an equivalent areal density conventional honeycomb-core sandwich panel (CHSP) structure. The results showed that AHSP no
Limanlardaki yük miktarları aralık ayında arttı ensonhaber.com - get the latest breaking news, showbiz & celebrity photos, sport news & rumours, viral videos and top stories from ensonhaber.com Daily Mail and Mail on Sunday newspapers.