In the summer of 2009, a team of Cambridge University undergraduates built seven strains of the bacterium
Escherichia coli, one in each color of the rainbow. Red and orange carotenoid pigments were produced by inserting genes from plant pathogen
Pantoea ananatis; a cluster of genes from
Chromobacterium violaceum were likewise modified to yield green and purple. The students’ technicolor creations, dubbed “E. chromi” in reference to the organisms’ scientific name, won the Cambridge team the grand prize at that year’s International Genetically Engineered Machines (iGEM) competition, in which high-school and college students engineer biology.
The students’ goals were not merely chromatic. Instead, they were building parts for biological machines. They engineered the genes into standardized forms called BioBricks: pieces of DNA that, like genetic Legos, are designed to be mixed and matched at will. Several thousand of these BioBricks, fulfilling various functions, are
Our energy dilemma
The hydrocarbon economy is faltering as oil reserves dwindle worldwide (Hirsch, 2008). Commodity prices have begun to fluctuate drastically due to the uncertain cost of petroleum, which resulted in food riots around the world in 2008. With a steadily decreasing energy supply and the demands on energy systems continually growing, the planet is in dire economic, geopolitical, and environmental straits. In order to halt the advance of climate change, prevent ecological collapse, rescue the global economy, and ensure our energy security, humanity must find a way to harness currently available (non-fossilized) energy. The largest source of energy on Earth, excluding the future potential for thermonuclear fusion reactors, is the sun. Human civilization consumes 15 TW annually while approximately 80,000 TW of solar energy fall on the Earth’s surface each year (Makarieva et al., 2008). For hundreds of millions of years, this solar flux has been the driving f