Hydrogel coatings pave an avenue for improving the lubricity, biocompatibility, and flexibility of solid surfaces. From the viewpoint of practical applications, this work establishes a scalable method to firmly adhere hydrogel layers to diverse solid surfaces. The strategy, termed as renatured hydrogel painting (RHP), refers to adhering dehydrated xerogel to a surface with appropriate glues, followed by the formation of a hydrogel layer after rehydration of the xerogel. With the benefits of simplicity and generality, this strategy can be readily applied to different hydrogel systems, no matter what the substrate is. Hydrogel adhesion is demonstrated by its tolerance against mechanical impact with hydrodynamic shearing at 14 m/s. This method affords powerful supplements to renew the surface chemistry and physical properties of solid substrates. In addition, we show that the RHP technique can be applied to living tissue, with potential for clinical applications such as the protection of