The additional energy consumption caused by the incompatibility between existing electric vehicle (EV) powertrain characteristics and driving conditions inevitably curbs the promotion and development of EVs. Hence, there is an urgent demand for the driving-adapt strategy, which aims to minimize EV energy consumption due to both powertrain characteristics and driving conditions. In order to fully explore the EV driving-adapt potential, this paper equips the EV with a magneto-rheological fluid transmission (MRFT). First, an EV dynamics analysis of the driving conditions, the powertrain model considering the energy transmission process, and the driving-adapt transmission model considering magneto-rheological fluid (MRF) is conducted to clarify the quantitative relation between the driving conditions and the powertrain. Second, a driving-adapt optimization strategy in the specific driving condition is proposed. Finally, the results and discussions are executed to study (i) the determinatio