comparemela.com


Using machine learning to identify blood biomarkers for early diagnosis of autism
Using machine learning tools to analyze hundreds of proteins, UT Southwestern researchers have identified a group of biomarkers in blood that could lead to an earlier diagnosis of children with autism spectrum disorder (ASD) and, in turn, more effective therapies sooner.
The identification of nine serum proteins that strongly predict ASD were reported in a study published today by
PLOS ONE.
Earlier diagnosis, followed by prompt therapeutic support and intervention, could have a significant impact on the 1 in 59 children diagnosed with autism in the United States. Being able to identify children on the autism spectrum when they are toddlers could make a big difference, says Dwight German, Ph.D., professor of psychiatry at UT Southwestern and senior author of the study.

Related Keywords

Germany ,United States ,Texas ,German ,Morgan Devlin ,Laura Hewitson ,Emily Henderson ,Johnson Center ,Child Health Development ,Dwight German ,Child Health ,Autism ,Blood ,Machine Learning ,Biomarker ,Children ,Bph ,Research ,ஜெர்மனி ,ஒன்றுபட்டது மாநிலங்களில் ,டெக்சாஸ் ,ஜெர்மன் ,மோர்கன் டெவ்லின் ,எமிலி ஹென்டர்சன் ,ஜான்சன் மையம் ,குழந்தை ஆரோக்கியம் வளர்ச்சி ,டுவைட் ஜெர்மன் ,குழந்தை ஆரோக்கியம் ,மன இறுக்கம் ,இரத்தம் ,இயந்திரம் கற்றல் ,பயோமார்க் ,குழந்தைகள் ,பீயெச் ,ஆராய்ச்சி ,

© 2025 Vimarsana

comparemela.com © 2020. All Rights Reserved.